Array Implementation In Data Structure And Algorithms (3)
So, in our previous Data structures and algorithms (series)
Data Structures and Algorithms - Arrays (codin-india.blogspot.com)
we saw how array used and in this blog we learn how to implement array in Data structures and algorithm.
Traverse Operation
This operation is to traverse through the elements of an array.
Example
Following program traverses and prints the elements of an array:
#include <stdio.h> main() { int LA[] = {1,3,5,7,8}; int item = 10, k = 3, n = 5; int i = 0, j = n; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } }
When we compile and execute the above program, it produces the following result −
Output
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
Insertion Operation
Insert operation is to insert one or more data elements into an array. Based on the requirement, a new element can be added at the beginning, end, or any given index of array.
Here, we see a practical implementation of insertion operation, where we add data at the end of the array −
Example
Following is the implementation of the above algorithm −
#include <stdio.h> main() { int LA[] = {1,3,5,7,8}; int item = 10, k = 3, n = 5; int i = 0, j = n; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } n = n + 1; while( j >= k) { LA[j+1] = LA[j]; j = j - 1; } LA[k] = item; printf("The array elements after insertion :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } }
When we compile and execute the above program, it produces the following result −
Output
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 The array elements after insertion : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 10 LA[4] = 7 LA[5] = 8
For other variations of array insertion operation click here
Deletion Operation
Deletion refers to removing an existing element from the array and re-organizing all elements of an array.
Algorithm
Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following is the algorithm to delete an element available at the Kth position of LA.
1. Start 2. Set J = K 3. Repeat steps 4 and 5 while J < N 4. Set LA[J] = LA[J + 1] 5. Set J = J+1 6. Set N = N-1 7. Stop
Example
Following is the implementation of the above algorithm −
#include <stdio.h> void main() { int LA[] = {1,3,5,7,8}; int k = 3, n = 5; int i, j; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } j = k; while( j < n) { LA[j-1] = LA[j]; j = j + 1; } n = n -1; printf("The array elements after deletion :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } }
When we compile and execute the above program, it produces the following result −
Output
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 The array elements after deletion : LA[0] = 1 LA[1] = 3 LA[2] = 7 LA[3] = 8
Search Operation
You can perform a search for an array element based on its value or its index.
Algorithm
Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following is the algorithm to find an element with a value of ITEM using sequential search.
1. Start 2. Set J = 0 3. Repeat steps 4 and 5 while J < N 4. IF LA[J] is equal ITEM THEN GOTO STEP 6 5. Set J = J +1 6. PRINT J, ITEM 7. Stop
Example
Following is the implementation of the above algorithm −
#include <stdio.h> void main() { int LA[] = {1,3,5,7,8}; int item = 5, n = 5; int i = 0, j = 0; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } while( j < n){ if( LA[j] == item ) { break; } j = j + 1; } printf("Found element %d at position %d\n", item, j+1); }
When we compile and execute the above program, it produces the following result −
Output
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 Found element 5 at position 3
Update Operation
Update operation refers to updating an existing element from the array at a given index.
Algorithm
Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following is the algorithm to update an element available at the Kth position of LA.
1. Start 2. Set LA[K-1] = ITEM 3. Stop
Example
Following is the implementation of the above algorithm −
#include <stdio.h> void main() { int LA[] = {1,3,5,7,8}; int k = 3, n = 5, item = 10; int i, j; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } LA[k-1] = item; printf("The array elements after updation :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } }
When we compile and execute the above program, it produces the following result −
Output
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 The array elements after updation : LA[0] = 1 LA[1] = 3 LA[2] = 10 LA[3] = 7
LA[4] = 8
So keep learning and in our next blog we will see or learn about 2D array and how to implement in Data structure and algorithm.
Here's the series of Data structures and algorithm
Learning Roadmap For Data Structure and Algorithms. (codin-india.blogspot.com)
Data Structures & Algorithms - Quick Guide (Step By Step) (1) (codin-india.blogspot.com)
Data Structures and Algorithms - Arrays (2) (codin-india.blogspot.com)
Array Implementation In Data Structure And Algorithms. (3) (codin-india.blogspot.com)
To Be Continued......
so stay tuned and subscribe our youtube channel Codin India
Comments
Post a Comment